Source code for felupe.constitution.small_strain.models._linear_elastic

# -*- coding: utf-8 -*-
"""
This file is part of FElupe.

FElupe is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

FElupe is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with FElupe.  If not, see <http://www.gnu.org/licenses/>.
"""

from ....math import cdya_ik, dya, identity, trace


[docs] def linear_elastic(, εn, σn, ζn, λ, μ, **kwargs): r"""3D linear-elastic material formulation to be used in :class:`~felupe.MaterialStrain`. Arguments --------- dε : ndarray Strain increment. εn : ndarray Old strain tensor. σn : ndarray Old stress tensor. ζn : list List of old state variables. λ : float First Lamé-constant. μ : float Second Lamé-constant (shear modulus). Returns ------- dσdε : ndarray Elasticity tensor. σ : ndarray (New) stress tensor. ζ : list List of new state variables. Notes ----- 1. Given state in point :math:`\boldsymbol{x} (\boldsymbol{\sigma}_n)` (valid). 2. Given strain increment :math:`\Delta\boldsymbol{\varepsilon}`, so that :math:`\boldsymbol{\varepsilon} = \boldsymbol{\varepsilon}_n + \Delta\boldsymbol{\varepsilon}`. 3. Evaluation of the stress :math:`\boldsymbol{\sigma}` and the algorithmic consistent tangent modulus :math:`\mathbb{C}` (=``dσdε``). .. math:: \mathbb{C} &= \lambda \ \boldsymbol{1} \otimes \boldsymbol{1} + 2 \mu \ \boldsymbol{1} \odot \boldsymbol{1} \boldsymbol{\sigma} &= \boldsymbol{\sigma}_n + \mathbb{C} : \Delta\boldsymbol{\varepsilon} Examples -------- .. pyvista-plot:: :context: >>> import felupe as fem >>> >>> umat = fem.MaterialStrain(material=fem.linear_elastic, λ=2.0, μ=1.0) >>> ax = umat.plot() .. pyvista-plot:: :include-source: False :context: :force_static: >>> import pyvista as pv >>> >>> fig = ax.get_figure() >>> chart = pv.ChartMPL(fig) >>> chart.show() See Also -------- MaterialStrain : A strain-based user-defined material definition with a given function for the stress tensor and the (fourth-order) elasticity tensor. """ # change of stress due to change of strain eye = identity(dim=3, shape=(1, 1)) = 2 * μ * + λ * trace() * eye # update stress σ = σn + # evaluate elasticity tensor if kwargs["tangent"]: dσdε = 2 * μ * cdya_ik(eye, eye) + λ * dya(eye, eye) else: dσdε = None # update state variables (not used here) ζ = ζn return dσdε, σ, ζ