Source code for felupe.constitution.tensortrax.models.hyperelastic._anssari_benam_bucchi

# -*- coding: utf-8 -*-
"""
This file is part of FElupe.

FElupe is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

FElupe is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with FElupe.  If not, see <http://www.gnu.org/licenses/>.
"""
from tensortrax.math import log, trace
from tensortrax.math.linalg import det


[docs] def anssari_benam_bucchi(C, mu, N): r"""Strain energy function of the isotropic hyperelastic generalized Neo-Hookean `Anssari-Benam Bucchi <https://doi.org/10.1016/j.ijnonlinmec.2020.103626>`_ material formulation [1]_. Parameters ---------- C : tensortrax.Tensor Right Cauchy-Green deformation tensor. mu : float Modulus :math:`\mu = nkT` - this is not the infinitesimal shear modulus. N : float Number of Kuhn segments of a chain. Notes ----- The strain energy function is given in Eq. :eq:`psi-abb` .. math:: :label: psi-abb \psi = \mu N \left( \frac{1}{6N} \left( \hat{I}_1 - 3 \right) - \ln \left( \frac{\hat{I}_1 - 3N}{3 - 3N} \right) \right) with the first main invariant of the distortional part of the right Cauchy-Green deformation tensor, see Eq. :eq:`invariant-abb`. .. math:: :label: invariant-abb \hat{I}_1 = J^{-2/3} \text{tr}\left( \boldsymbol{C} \right) The initial shear modulus :math:`\mu_0` is given in Eq. :eq:`shear-modulus-abb`. .. math:: :label: shear-modulus-abb \mu_0 = \mu \frac{1 - 3N}{3 - 3N} Examples -------- .. pyvista-plot:: :context: >>> import felupe as fem >>> >>> umat = fem.Hyperelastic(fem.anssari_benam_bucchi, mu=0.29, N=26.8) >>> >>> ux = fem.math.linsteps([0.6, 5], num=50) >>> ps = fem.math.linsteps([1, 5], num=50) >>> bx = fem.math.linsteps([1, 3], num=50) >>> >>> ax = umat.plot(ux=ux, ps=ps, bx=bx, incompressible=True) .. pyvista-plot:: :include-source: False :context: :force_static: >>> import pyvista as pv >>> >>> fig = ax.get_figure() >>> chart = pv.ChartMPL(fig) >>> chart.show() References ---------- .. [1] A. Anssari-Benam and A. Bucchi, "A generalised neo-Hookean strain energy function for application to the finite deformation of elastomers", International Journal of Non-Linear Mechanics, vol. 128. Elsevier BV, p. 103626, Jan. 2021. doi: `10.1016/j.ijnonlinmec.2020.103626 <https://doi.org/10.1016/j.ijnonlinmec.2020.103626>`_. """ I1 = det(C) ** (-1 / 3) * trace(C) return mu * N * ((I1 - 3) / (6 * N) - log((I1 - 3 * N) / (3 - 3 * N)))