Source code for felupe.constitution.tensortrax.models.hyperelastic._arruda_boyce

# -*- coding: utf-8 -*-
"""
This file is part of FElupe.

FElupe is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

FElupe is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with FElupe.  If not, see <http://www.gnu.org/licenses/>.
"""

from tensortrax.math import sum as tsum
from tensortrax.math import trace
from tensortrax.math.linalg import det


[docs] def arruda_boyce(C, C1, limit): r"""Strain energy function of the isotropic hyperelastic `Arruda-Boyce <https://en.wikipedia.org/wiki/Arruda-Boyce_model>`_ material formulation. Parameters ---------- C : tensortrax.Tensor Right Cauchy-Green deformation tensor. C1 : float Initial shear modulus. limit : float Limiting stretch :math:`\lambda_m` at which the polymer chain network becomes locked. Notes ----- The strain energy function is given in Eq. :eq:`psi-ab` .. math:: :label: psi-ab \psi = C_1 \sum_{i=1}^5 \alpha_i \beta^{i-1} \left( \hat{I}_1^i - 3^i \right) with the first main invariant of the distortional part of the right Cauchy-Green deformation tensor as given in Eq. :eq:`invariants-ab` .. math:: :label: invariants-ab \hat{I}_1 = J^{-2/3} \text{tr}\left( \boldsymbol{C} \right) and :math:`\alpha_i` and :math:`\beta` as denoted in Eq. :eq:`ab-param`. .. math:: :label: ab-param \boldsymbol{\alpha} &= \begin{bmatrix} \frac{1}{2} \\ \frac{1}{20} \\ \frac{11}{1050} \\ \frac{19}{7000} \\ \frac{519}{673750} \end{bmatrix} \beta &= \frac{1}{\lambda_m^2} The initial shear modulus is a function of both material parameters, see Eq. :eq:`shear-modulus-ab`. .. math:: :label: shear-modulus-ab \mu = C_1 \left( 1 + \frac{3}{5 \lambda_m^2} + \frac{99}{175 \lambda_m^4} + \frac{513}{875 \lambda_m^6} + \frac{42039}{67375 \lambda_m^8} \right) Examples -------- .. pyvista-plot:: :context: >>> import felupe as fem >>> >>> umat = fem.Hyperelastic(fem.arruda_boyce, C1=1.0, limit=3.2) >>> ax = umat.plot(incompressible=True) .. pyvista-plot:: :include-source: False :context: :force_static: >>> import pyvista as pv >>> >>> fig = ax.get_figure() >>> chart = pv.ChartMPL(fig) >>> chart.show() """ I1 = det(C) ** (-1 / 3) * trace(C) alphas = [1 / 2, 1 / 20, 11 / 1050, 19 / 7000, 519 / 673750] beta = 1 / limit**2 out = [] for j, alpha in enumerate(alphas): i = j + 1 out.append(alpha * beta ** (i - 1) * (I1**i - 3**i)) return C1 * tsum(out)