Source code for felupe.constitution.tensortrax.models.hyperelastic._extended_tube

# -*- coding: utf-8 -*-
"""
This file is part of FElupe.

FElupe is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

FElupe is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with FElupe.  If not, see <http://www.gnu.org/licenses/>.
"""

from tensortrax.math import log
from tensortrax.math import sum as tsum
from tensortrax.math import trace
from tensortrax.math.linalg import det, eigvalsh


[docs] def extended_tube(C, Gc, delta, Ge, beta): r"""Strain energy function of the isotropic hyperelastic `Extended Tube <https://www.doi.org/10.5254/1.3538822>`_ [1]_ material formulation. Parameters ---------- C : tensortrax.Tensor or jax.Array Right Cauchy-Green deformation tensor. Gc : float Cross-link contribution to the initial shear modulus. delta : float Finite extension parameter of the polymer strands. Ge : float Constraint contribution to the initial shear modulus. beta : float Global rearrangements of cross-links upon deformation (release of topological constraints). Notes ----- The strain energy function is given in Eq. :eq:`psi-et` .. math:: :label: psi-et \psi = \frac{G_c}{2} \left[ \frac{\left( 1 - \delta^2 \right) \left( \hat{I}_1 - 3 \right)}{1 - \delta^2 \left( \hat{I}_1 - 3 \right)} + \ln \left( 1 - \delta^2 \left( \hat{I}_1 - 3 \right) \right) \right] + \frac{2 G_e}{\beta^2} \left( \hat{\lambda}_1^{-\beta} + \hat{\lambda}_2^{-\beta} + \hat{\lambda}_3^{-\beta} - 3 \right) with the first main invariant of the distortional part of the right Cauchy-Green deformation tensor as given in Eq. :eq:`invariants-et` .. math:: :label: invariants-et \hat{I}_1 = J^{-2/3} \text{tr}\left( \boldsymbol{C} \right) and the principal stretches, obtained from the distortional part of the right Cauchy-Green deformation tensor, see Eq. :eq:`stretches-et`. .. math:: :label: stretches-et \lambda^2_\alpha &= \text{eigvals}\left( \boldsymbol{C} \right) \hat{\lambda}_\alpha &= J^{-1/3} \lambda_\alpha The initial shear modulus results from the sum of the cross-link and the constraint contributions to the total initial shear modulus as denoted in Eq. :eq:`shear-modulus-et`. .. math:: :label: shear-modulus-et \mu = G_e + G_c Examples -------- First, choose the desired automatic differentiation backend .. pyvista-plot:: :context: >>> # import felupe.constitution.jax as mat >>> import felupe.constitution.tensortrax as mat and create the hyperelastic material. .. pyvista-plot:: :context: >>> import felupe as fem >>> >>> umat = mat.Hyperelastic( ... mat.models.hyperelastic.extended_tube, ... Gc=0.1867, ... Ge=0.2169, ... beta=0.2, ... delta=0.09693, ... ) >>> ax = umat.plot(incompressible=True) .. pyvista-plot:: :include-source: False :context: :force_static: >>> import pyvista as pv >>> >>> fig = ax.get_figure() >>> chart = pv.ChartMPL(fig) >>> chart.show() References ---------- .. [1] M. Kaliske and G. Heinrich, "An Extended Tube-Model for Rubber Elasticity: Statistical-Mechanical Theory and Finite Element Implementation", Rubber Chemistry and Technology, vol. 72, no. 4. Rubber Division, ACS, pp. 602–632, Sep. 01, 1999. doi: `10.5254/1.3538822 <https://www.doi.org/10.5254/1.3538822>`_. """ J3 = det(C) ** (-1 / 3) D = J3 * trace(C) wC = J3 * eigvalsh(C) g = (1 - delta**2) * (D - 3) / (1 - delta**2 * (D - 3)) Wc = Gc / 2 * (g + log(1 - delta**2 * (D - 3))) We = 2 * Ge / beta**2 * tsum(wC ** (-beta / 2) - 1) return Wc + We