Source code for felupe.constitution.tensortrax.models.hyperelastic._lopez_pamies

# -*- coding: utf-8 -*-
"""
This file is part of FElupe.

FElupe is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

FElupe is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with FElupe.  If not, see <http://www.gnu.org/licenses/>.
"""
from tensortrax.math import sum as tsum
from tensortrax.math import trace
from tensortrax.math.linalg import det


[docs] def lopez_pamies(C, mu, alpha): r"""Strain energy function of the isotropic hyperelastic `Lopez-Pamies <https://doi.org/10.1016/j.crme.2009.12.007>`_ material formulation [1]_. Parameters ---------- C : tensortrax.Tensor Right Cauchy-Green deformation tensor. mu : list of float List of moduli. alpha : list of float List of invariant exponents. Notes ----- The strain energy function is given in Eq. :eq:`psi-lp` .. math:: :label: psi-lp \psi = \sum_{r=1}^M \frac{3^{1-\alpha_r}}{2 \alpha_r} \mu_r \left( \hat{I}_1^{\alpha_r} - 3^{\alpha_r} \right) with the first main invariant of the distortional part of the right Cauchy-Green deformation tensor, see Eq. :eq:`invariant-lp`. .. math:: :label: invariant-lp \hat{I}_1 = J^{-2/3} \text{tr}\left( \boldsymbol{C} \right) The sum of the moduli :math:`\mu_r` is equal to the initial shear modulus :math:`\mu`, see Eq. :eq:`shear-modulus-lp`. .. math:: :label: shear-modulus-lp \mu = \sum_r \mu_r Examples -------- .. pyvista-plot:: :context: >>> import felupe as fem >>> >>> umat = fem.Hyperelastic( ... fem.lopez_pamies, mu=[0.2699, 0.00001771], alpha=[1.08, 4.40] ... ) >>> >>> ux = fem.math.linsteps([0.6, 7], num=50) >>> ps = fem.math.linsteps([1, 7], num=50) >>> bx = fem.math.linsteps([1, 5], num=50) >>> >>> ax = umat.plot(ux=ux, ps=ps, bx=bx, incompressible=True) .. pyvista-plot:: :include-source: False :context: :force_static: >>> import pyvista as pv >>> >>> fig = ax.get_figure() >>> chart = pv.ChartMPL(fig) >>> chart.show() References ---------- .. [1] O. Lopez-Pamies, "A new I1-based hyperelastic model for rubber elastic materials", Comptes Rendus. Mécanique, vol. 338, no. 1. Cellule MathDoc/Centre Mersenne, pp. 3–11, Dec. 23, 2009. doi: `10.1016/j.crme.2009.12.007 <https://doi.org/10.1016/j.crme.2009.12.007>`_. """ I1 = det(C) ** (-1 / 3) * trace(C) ψr = lambda μr, αr, I1: 3 ** (1 - αr) / (2 * αr) * μr * (I1**αr - 3**αr) return tsum([ψr(μr, αr, I1) for μr, αr in zip(mu, alpha)])