Source code for felupe.constitution.tensortrax.models.hyperelastic._saint_venant_kirchhoff_orthotropic

# -*- coding: utf-8 -*-
"""
This file is part of FElupe.

FElupe is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

FElupe is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with FElupe.  If not, see <http://www.gnu.org/licenses/>.
"""
from numpy import array
from tensortrax.math import base, einsum, log
from tensortrax.math import sum as tsum
from tensortrax.math.linalg import eigh
from tensortrax.math.special import from_triu_1d

from .....math import cross


[docs] def saint_venant_kirchhoff_orthotropic(C, mu, lmbda, r1, r2, r3=None, k=2): r"""Strain energy function of the orthotropic hyperelastic `Saint-Venant Kirchhoff <https://en.wikipedia.org/wiki/Hyperelastic_material#Saint_Venant-Kirchhoff_model>`_ material formulation. Parameters ---------- C : tensortrax.Tensor Right Cauchy-Green deformation tensor. mu : list of float List of the three second Lamé parameters :math:`\mu_1,\mu_2, \mu_3`. lmbda : list of float List of six (upper triangle) first Lamé parameters :math:`\lambda_{11}, \lambda_{12}, \lambda_{13}, \lambda_{22}, \lambda_{23}, \lambda_{33}`. r1 : list of float First normal vector of planes of symmetry. r2 : list of float Second normal vector of planes of symmetry. r3 : list of float or None, optional Third normal vector of planes of symmetry. If None, the third normal vector is evaluated as :math:`r_1 \times r_2`. Default is None. k : float, optional Strain exponent (default is 2). If 2, the Green-Lagrange strain measure is used. For any other value, the family of Seth-Hill strains is used. Notes ----- The strain energy function is given in Eq. :eq:`psi-svk-ortho` .. math:: :label: psi-svk-ortho \psi = \sum_{a=1}^3 \mu_a \boldsymbol{E} : \boldsymbol{r}_a \otimes \boldsymbol{r}_a + \sum_{a=1}^3 \sum_{b=1}^3 \frac{\lambda_{ab}}{2} \left(\boldsymbol{E} : \boldsymbol{r}_a \otimes \boldsymbol{r}_a \right) \left(\boldsymbol{E} : \boldsymbol{r}_b \otimes \boldsymbol{r}_b \right) Examples -------- .. warning:: The orthotropic Saint-Venant Kirchhoff material formulation is unstable for large strains. .. pyvista-plot:: :context: >>> import felupe.constitution.tensortrax as mat >>> import felupe as fem >>> >>> r = fem.math.rotation_matrix(0, axis=2) >>> lmbda, mu = fem.constitution.lame_converter_orthotropic( ... E=[10, 10, 10], ... nu=[0.3, 0.3, 0.3], ... G=[1, 1, 1], ... ) >>> umat = mat.Hyperelastic( ... mat.models.hyperelastic.saint_venant_kirchhoff_orthotropic, ... mu=mu, ... lmbda=lmbda, ... r1=r[:, 0], ... r2=r[:, 1], ... r3=r[:, 2], ... ) >>> ax = umat.plot(ux=fem.math.linsteps([1, 1.1], num=10), ps=None, bx=None) .. pyvista-plot:: :include-source: False :context: :force_static: >>> import pyvista as pv >>> >>> fig = ax.get_figure() >>> chart = pv.ChartMPL(fig) >>> chart.show() """ eye = base.eye if k == 2: E = (C - eye(C)) / 2 else: λ2, M = eigh(C) if k == 0: E = tsum(log(λ2) / 2 * M, axis=0) else: E = tsum((λ2 ** (k / 2) - 1) / k * M, axis=0) μ = array(mu) λ = from_triu_1d(array(lmbda)) if r3 is None: r3 = cross(r1, r2) r = array([r1, r2, r3]) Err = einsum("ai...,ij...,aj...->a...", r, E, r) λI1 = einsum("ab,a...,b...->...", λ / 2, Err, Err) μI2 = einsum("a,ai...,ij...,aj...->...", μ, r, E @ E, r) return μI2 + λI1