Source code for felupe.constitution.tensortrax.models.hyperelastic._storakers
# -*- coding: utf-8 -*-
"""
This file is part of FElupe.
FElupe is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
FElupe is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with FElupe. If not, see <http://www.gnu.org/licenses/>.
"""
from tensortrax.math import sum as tsum
from tensortrax.math.linalg import det, eigvalsh
[docs]
def storakers(C, mu, alpha, beta):
r"""Strain energy function of the Storåkers isotropic hyperelastic
`foam <https://doi.org/10.1016/0022-5096(86)90033-5>`_ material formulation [1]_.
Parameters
----------
C : tensortrax.Tensor or jax.Array
Right Cauchy-Green deformation tensor.
mu : list of float
List of moduli.
alpha : list of float
List of stretch exponents.
beta : list of float
List of coefficients for the degree of compressibility.
Notes
-----
The strain energy function is given in Eq. :eq:`psi-foam`
.. math::
:label: psi-foam
\psi = \sum_i \frac{2 \mu_i}{\alpha^2_i} \left[
\lambda_1^{\alpha_i} +
\lambda_2^{\alpha_i} +
\lambda_3^{\alpha_i} - 3
+ \frac{1}{\beta_i} \left( J^{-\alpha_i \beta_i} - 1 \right)
\right]
The sum of the moduli :math:`\mu_i` is equal to the initial shear modulus
:math:`\mu`, see Eq. :eq:`shear-modulus-foam`,
.. math::
:label: shear-modulus-foam
\mu = \sum_i \mu_i
and the initial bulk modulus is given in Eq. :eq:`bulk-modulus-foam`.
.. math::
:label: bulk-modulus-foam
K = \sum_i 2 \mu_i \left( \frac{1}{3} + \beta_i \right)
Examples
--------
First, choose the desired automatic differentiation backend
.. pyvista-plot::
:context:
>>> # import felupe.constitution.jax as mat
>>> import felupe.constitution.tensortrax as mat
and create the hyperelastic material.
.. pyvista-plot::
:context:
>>> import felupe as fem
>>>
>>> umat = mat.Hyperelastic(
... mat.models.hyperelastic.storakers,
... mu=[4.5 * (1.85 / 2), -4.5 * (-9.2 / 2)],
... alpha=[1.85, -9.2],
... beta=[0.92, 0.92],
... )
>>> ax = umat.plot(
... ux=fem.math.linsteps([1, 2], 15),
... ps=fem.math.linsteps([1, 1], 15),
... bx=fem.math.linsteps([1, 1], 9),
... )
.. pyvista-plot::
:include-source: False
:context:
:force_static:
>>> import pyvista as pv
>>>
>>> fig = ax.get_figure()
>>> chart = pv.ChartMPL(fig)
>>> chart.show()
References
----------
.. [1] B. Storåkers, "On material representation and constitutive branching in
finite compressible elasticity", Journal of the Mechanics and Physics of Solids,
vol. 34, no. 2. Elsevier BV, pp. 125–145, Jan. 1986. doi:
10.1016/0022-5096(86)90033-5.
"""
λ2 = eigvalsh(C)
return tsum(
[
2 * μ / α**2 * (tsum(λ2 ** (α / 2)) - 3 + (det(C) ** (-α * β / 2) - 1) / β)
for μ, α, β in zip(mu, alpha, beta)
]
)