Source code for felupe.constitution.tensortrax.models.hyperelastic._storakers

# -*- coding: utf-8 -*-
"""
This file is part of FElupe.

FElupe is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

FElupe is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with FElupe.  If not, see <http://www.gnu.org/licenses/>.
"""

from tensortrax.math import sum as tsum
from tensortrax.math.linalg import det, eigvalsh


[docs] def storakers(C, mu, alpha, beta): r"""Strain energy function of the Storåkers isotropic hyperelastic `foam <https://doi.org/10.1016/0022-5096(86)90033-5>`_ material formulation [1]_. Parameters ---------- C : tensortrax.Tensor or jax.Array Right Cauchy-Green deformation tensor. mu : list of float List of moduli. alpha : list of float List of stretch exponents. beta : list of float List of coefficients for the degree of compressibility. Notes ----- The strain energy function is given in Eq. :eq:`psi-foam` .. math:: :label: psi-foam \psi = \sum_i \frac{2 \mu_i}{\alpha^2_i} \left[ \lambda_1^{\alpha_i} + \lambda_2^{\alpha_i} + \lambda_3^{\alpha_i} - 3 + \frac{1}{\beta_i} \left( J^{-\alpha_i \beta_i} - 1 \right) \right] The sum of the moduli :math:`\mu_i` is equal to the initial shear modulus :math:`\mu`, see Eq. :eq:`shear-modulus-foam`, .. math:: :label: shear-modulus-foam \mu = \sum_i \mu_i and the initial bulk modulus is given in Eq. :eq:`bulk-modulus-foam`. .. math:: :label: bulk-modulus-foam K = \sum_i 2 \mu_i \left( \frac{1}{3} + \beta_i \right) Examples -------- First, choose the desired automatic differentiation backend .. pyvista-plot:: :context: >>> # import felupe.constitution.jax as mat >>> import felupe.constitution.tensortrax as mat and create the hyperelastic material. .. pyvista-plot:: :context: >>> import felupe as fem >>> >>> umat = mat.Hyperelastic( ... mat.models.hyperelastic.storakers, ... mu=[4.5 * (1.85 / 2), -4.5 * (-9.2 / 2)], ... alpha=[1.85, -9.2], ... beta=[0.92, 0.92], ... ) >>> ax = umat.plot( ... ux=fem.math.linsteps([1, 2], 15), ... ps=fem.math.linsteps([1, 1], 15), ... bx=fem.math.linsteps([1, 1], 9), ... ) .. pyvista-plot:: :include-source: False :context: :force_static: >>> import pyvista as pv >>> >>> fig = ax.get_figure() >>> chart = pv.ChartMPL(fig) >>> chart.show() References ---------- .. [1] B. Storåkers, "On material representation and constitutive branching in finite compressible elasticity", Journal of the Mechanics and Physics of Solids, vol. 34, no. 2. Elsevier BV, pp. 125–145, Jan. 1986. doi: 10.1016/0022-5096(86)90033-5. """ λ2 = eigvalsh(C) return tsum( [ 2 * μ / α**2 * (tsum(λ2 ** (α / 2)) - 3 + (det(C) ** (-α * β / 2) - 1) / β) for μ, α, β in zip(mu, alpha, beta) ] )