Source code for felupe.constitution.tensortrax.models.hyperelastic._third_order_deformation

# -*- coding: utf-8 -*-
"""
This file is part of FElupe.

FElupe is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

FElupe is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with FElupe.  If not, see <http://www.gnu.org/licenses/>.
"""

from tensortrax.math import trace
from tensortrax.math.linalg import det


[docs] def third_order_deformation(C, C10, C01, C11, C20, C30): r"""Strain energy function of the isotropic hyperelastic `Third-Order-Deformation <https://doi.org/10.1002/app.1975.070190723>`_ material formulation. Parameters ---------- C : tensortrax.Tensor or jax.Array Right Cauchy-Green deformation tensor. C10 : float Material parameter associated to the linear term of the first invariant. C01 : float Material parameter associated to the linear term of the second invariant. C11 : float Material parameter associated to the mixed term of the first and second invariant. C20 : float Material parameter associated to the quadratic term of the first invariant. C30 : float Material parameter associated to the cubic term of the first invariant. Notes ----- The strain energy function is given in Eq. :eq:`psi-tod` .. math:: :label: psi-tod \psi &= C_{10} \left(\hat{I}_1 - 3 \right) + C_{01} \left(\hat{I}_2 - 3 \right) + C_{11} \left(\hat{I}_1 - 3 \right) \left(\hat{I}_2 - 3 \right) &+ C_{20} \left(\hat{I}_1 - 3 \right)^2 + C_{30} \left(\hat{I}_1 - 3 \right)^3 with the first and second main invariant of the distortional part of the right Cauchy-Green deformation tensor, see Eq. :eq:`invariants-tod`. .. math:: :label: invariants-tod \hat{I}_1 &= J^{-2/3} \text{tr}\left( \boldsymbol{C} \right) \hat{I}_2 &= J^{-4/3} \frac{1}{2} \left( \text{tr}\left(\boldsymbol{C}\right)^2 - \text{tr}\left(\boldsymbol{C}^2\right) \right) The doubled sum of the material parameters :math:`C_{10}` and :math:`C_{01}` is equal to the initial shear modulus :math:`\mu` as denoted in Eq. :eq:`shear-modulus-tod`. .. math:: :label: shear-modulus-tod \mu = 2 \left( C_{10} + C_{01} \right) Examples -------- First, choose the desired automatic differentiation backend .. pyvista-plot:: :context: >>> # import felupe.constitution.jax as mat >>> import felupe.constitution.tensortrax as mat and create the hyperelastic material. .. pyvista-plot:: :context: >>> umat = mat.Hyperelastic( ... mat.models.hyperelastic.third_order_deformation, ... C10=0.5, ... C01=0.1, ... C11=0.01, ... C20=-0.1, ... C30=0.02, ... ) >>> ax = umat.plot(incompressible=True) .. pyvista-plot:: :include-source: False :context: :force_static: >>> import pyvista as pv >>> >>> fig = ax.get_figure() >>> chart = pv.ChartMPL(fig) >>> chart.show() """ J3 = det(C) ** (-1 / 3) I1 = J3 * trace(C) I2 = (I1**2 - J3**2 * trace(C @ C)) / 2 return ( C10 * (I1 - 3) + C01 * (I2 - 3) + C11 * (I1 - 3) * (I2 - 3) + C20 * (I1 - 3) ** 2 + C30 * (I1 - 3) ** 3 )