Source code for felupe.constitution.tensortrax.models.hyperelastic._van_der_waals
# -*- coding: utf-8 -*-
"""
This file is part of FElupe.
FElupe is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
FElupe is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with FElupe. If not, see <http://www.gnu.org/licenses/>.
"""
import numpy as np
from tensortrax.math import log, sqrt, trace
from tensortrax.math.linalg import det
[docs]
def van_der_waals(C, mu, limit, a, beta):
r"""Strain energy function of the
`Van der Waals <https://doi.org/10.1016/0032-3861(81)90200-7>`_ [1]_ material
formulation.
Parameters
----------
C : tensortrax.Tensor or jax.Array
Right Cauchy-Green deformation tensor.
mu : float
Initial shear modulus.
limit : float
Limiting stretch :math:`\lambda_m` at which the polymer chain network becomes
locked.
a : float
Attractive interactions between the quasi-particles.
beta : float
Mixed-Invariant factor: 0 for pure I1- and 1 for pure I2-contribution.
Examples
--------
First, choose the desired automatic differentiation backend
.. pyvista-plot::
:context:
>>> # import felupe.constitution.jax as mat
>>> import felupe.constitution.tensortrax as mat
and create the hyperelastic material.
.. pyvista-plot::
:context:
>>> import felupe as fem
>>>
>>> umat = mat.Hyperelastic(
... mat.models.hyperelastic.van_der_waals,
... mu=1.0,
... beta=0.1,
... a=0.5,
... limit=5.0
... )
>>> ax = umat.plot(incompressible=True)
.. pyvista-plot::
:include-source: False
:context:
:force_static:
>>> import pyvista as pv
>>>
>>> fig = ax.get_figure()
>>> chart = pv.ChartMPL(fig)
>>> chart.show()
References
----------
.. [1] H.-G. Kilian, "Equation of state of real networks", Polymer, vol. 22, no. 2.
Elsevier BV, pp. 209–217, Feb. 1981. doi:
`10.1016/0032-3861(81)90200-7 <https://www.doi.org/10.1016/0032-3861(81)90200-7>`_.
"""
J3 = det(C) ** (-1 / 3)
I1 = J3 * trace(C)
I2 = (trace(C) ** 2 - J3**2 * trace(C @ C)) / 2
Im = (1 - beta) * I1 + beta * I2
Im += 1e-4
eta = sqrt((Im - 3) / (limit**2 - 3))
return mu * (
-(limit**2 - 3) * (log(1 - eta) + eta) - 2 / 3 * a * ((Im - 3) / 2) ** (3 / 2)
)