Source code for felupe.constitution._user_materials_models

# -*- coding: utf-8 -*-
"""
This file is part of FElupe.

FElupe is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

FElupe is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with FElupe.  If not, see <http://www.gnu.org/licenses/>.
"""

import numpy as np

from ..math import cdya_ik, ddot, dya, identity, sqrt, trace


[docs] def linear_elastic(, εn, σn, ζn, λ, μ, **kwargs): r"""3D linear-elastic material formulation to be used in :class:`~felupe.MaterialStrain`. Arguments --------- dε : ndarray Strain increment. εn : ndarray Old strain tensor. σn : ndarray Old stress tensor. ζn : list List of old state variables. λ : float First Lamé-constant. μ : float Second Lamé-constant (shear modulus). Returns ------- dσdε : ndarray Elasticity tensor. σ : ndarray (New) stress tensor. ζ : list List of new state variables. Notes ----- 1. Given state in point :math:`\boldsymbol{x} (\boldsymbol{\sigma}_n)` (valid). 2. Given strain increment :math:`\Delta\boldsymbol{\varepsilon}`, so that :math:`\boldsymbol{\varepsilon} = \boldsymbol{\varepsilon}_n + \Delta\boldsymbol{\varepsilon}`. 3. Evaluation of the stress :math:`\boldsymbol{\sigma}` and the algorithmic consistent tangent modulus :math:`\mathbb{C}` (=``dσdε``). .. math:: \mathbb{C} &= \lambda \ \boldsymbol{1} \otimes \boldsymbol{1} + 2 \mu \ \boldsymbol{1} \odot \boldsymbol{1} \boldsymbol{\sigma} &= \boldsymbol{\sigma}_n + \mathbb{C} : \Delta\boldsymbol{\varepsilon} Examples -------- .. pyvista-plot:: :context: >>> import felupe as fem >>> >>> umat = fem.MaterialStrain(material=fem.linear_elastic, λ=2.0, μ=1.0) >>> ax = umat.plot() .. pyvista-plot:: :include-source: False :context: :force_static: >>> import pyvista as pv >>> >>> fig = ax.get_figure() >>> chart = pv.ChartMPL(fig) >>> chart.show() See Also -------- MaterialStrain : A strain-based user-defined material definition with a given function for the stress tensor and the (fourth-order) elasticity tensor. """ # change of stress due to change of strain eye = identity(dim=3, shape=(1, 1)) = 2 * μ * + λ * trace() * eye # update stress σ = σn + # evaluate elasticity tensor if kwargs["tangent"]: dσdε = 2 * μ * cdya_ik(eye, eye) + λ * dya(eye, eye) else: dσdε = None # update state variables (not used here) ζ = ζn return dσdε, σ, ζ
[docs] def linear_elastic_plastic_isotropic_hardening(, εn, σn, ζn, λ, μ, σy, K, **kwargs): r"""Linear-elastic-plastic material formulation with linear isotropic hardening (return mapping algorithm) to be used in :class:`~felupe.MaterialStrain`. Arguments --------- dε : ndarray Strain increment. εn : ndarray Old strain tensor. σn : ndarray Old stress tensor. ζn : list List of old state variables. λ : float First Lamé-constant. μ : float Second Lamé-constant (shear modulus). σy : float Initial yield stress. K : float Isotropic hardening modulus. Returns ------- dσdε : ndarray Algorithmic consistent elasticity tensor. σ : ndarray (New) stress tensor. ζ : list List of new state variables. Notes ----- 1. Given state in point :math:`x (\sigma_n, \zeta_n=[\varepsilon^p_n, \alpha_n])` (valid). 2. Given strain increment :math:`\Delta\varepsilon`, so that :math:`\varepsilon = \varepsilon_n + \Delta\varepsilon`. 3. Evaluation of the hypothetic trial state: .. math:: \mathbb{C} &= \lambda\ \boldsymbol{1} \otimes \boldsymbol{1} + 2 \mu\ \boldsymbol{1} \odot \boldsymbol{1} \sigma &= \sigma_n + \mathbb{C} : \Delta\varepsilon s &= \text{dev}(\sigma) \varepsilon^p &= \varepsilon^p_n \alpha &= \alpha_n f &= ||s|| - \sqrt{\frac{2}{3}}\ (\sigma_y + K \alpha) 4. If :math:`f \le 0`, then elastic step: Set :math:`y = y_n + \Delta y, y=(\sigma, \zeta=[\varepsilon^p, \alpha])`, algorithmic consistent tangent modulus :math:`d\sigma d\varepsilon`. .. math:: d\sigma d\varepsilon = \mathbb{C} Else: .. math:: d\gamma &= \frac{f}{2\mu + \frac{2}{3} K} n &= \frac{s}{||s||} \sigma &= \sigma - 2\mu \Delta\gamma n \varepsilon^p &= \varepsilon^p_n + \Delta\gamma n \alpha &= \alpha_n + \sqrt{\frac{2}{3}}\ \Delta\gamma Algorithmic consistent tangent modulus: .. math:: d\sigma d\varepsilon = \mathbb{C} - \frac{2 \mu}{1 + \frac{K}{3 \mu}} n \otimes n - \frac{2 \mu \Delta\gamma}{||s||} \left[ 2 \mu \left( \boldsymbol{1} \odot \boldsymbol{1} - \frac{1}{3} \boldsymbol{1} \otimes \boldsymbol{1} - n \otimes n \right) \right] Examples -------- .. pyvista-plot:: :context: >>> import felupe as fem >>> >>> umat = fem.MaterialStrain( ... material=fem.linear_elastic_plastic_isotropic_hardening, ... λ=2.0, ... μ=1.0, ... σy=1.0, ... K=0.1, ... dim=3, ... statevars=(1, (3, 3)), ... ) .. pyvista-plot:: :include-source: False :context: :force_static: >>> import pyvista as pv >>> >>> fig = ax.get_figure() >>> chart = pv.ChartMPL(fig) >>> chart.show() See Also -------- MaterialStrain : A strain-based user-defined material definition with a given function for the stress tensor and the (fourth-order) elasticity tensor. """ eye = identity() # elasticity tensor if kwargs["tangent"]: dσdε = np.zeros((3, 3, 3, 3, *.shape[2:])) dσdε[:] = λ * dya(eye, eye) + 2 * μ * cdya_ik(eye, eye) else: dσdε = None # elastic hypothetic (trial) stress and deviatoric stress = 2 * μ * + λ * trace() * eye σ = σn + s = σ - 1 / 3 * trace(σ) * eye # unpack old state variables α, εp = ζn # hypothetic (trial) yield function norm_s = sqrt(ddot(s, s)) f = norm_s - sqrt(2 / 3) * (σy + K * α) ζ = ζn # check yield function and create a mask where plasticity occurs mask = (f > 0)[0] # update stress, tangent and state due to plasticity if np.any(mask): = f / (2 * μ + 2 / 3 * K) n = s / norm_s εp = εp + * n α = α + sqrt(2 / 3) * # stress σ[..., mask] = (σ - 2 * μ * * n)[..., mask] # algorithmic consistent tangent modulus if kwargs["tangent"]: dσdε[..., mask] = ( dσdε - 2 * μ / (1 + K / (3 * μ)) * dya(n, n) - 2 * μ * / norm_s * ( 2 * μ * (cdya_ik(eye, eye) - 1 / 3 * dya(eye, eye)) - 2 * μ * dya(n, n) ) )[..., mask] # update list of state variables ζ[0][..., mask] = α[..., mask] ζ[1][..., mask] = εp[..., mask] return dσdε, σ, ζ