Source code for felupe.mechanics._job

# -*- coding: utf-8 -*-
"""
 _______  _______  ___      __   __  _______  _______ 
|       ||       ||   |    |  | |  ||       ||       |
|    ___||    ___||   |    |  | |  ||    _  ||    ___|
|   |___ |   |___ |   |    |  |_|  ||   |_| ||   |___ 
|    ___||    ___||   |___ |       ||    ___||    ___|
|   |    |   |___ |       ||       ||   |    |   |___ 
|___|    |_______||_______||_______||___|    |_______|

This file is part of felupe.

Felupe is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

Felupe is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with Felupe.  If not, see <http://www.gnu.org/licenses/>.

"""

import numpy as np
from .. import __version__ as version

from ..math import dot, transpose, eigvalsh, eigh, tovoigt


def displacement(substep):
    "Displacement Vector"
    u = substep.x[0].values
    return np.pad(u, ((0, 0), (0, 3 - u.shape[1])))


def deformation_gradient(substep):
    "Deformation Gradient"
    F = substep.x[0].extract()
    return [F.mean(-2).transpose([2, 0, 1])]


def log_strain_principal(substep):
    "Principal Values of Logarithmic Strain"
    u = substep.x[0]
    F = u.extract()
    stretch = np.sqrt(eigvalsh(dot(transpose(F), F)))[::-1]
    strain = np.log(stretch).mean(-2)
    return [strain.T]


def log_strain(substep):
    "Lagrangian Logarithmic Strain Tensor"
    u = substep.x[0]
    F = u.extract()
    w, v = eigh(dot(transpose(F), F))
    stretch = np.sqrt(w)
    strain = np.einsum("a...,ia...,ja...->ij...", np.log(stretch), v, v)
    return [tovoigt(strain.mean(-2), True).T]


[docs]class Job: "A job with a list of steps." def __init__( self, steps, callback=lambda stepnumber, substepnumber, substep: None, filename=None, ): self.steps = steps self.nsteps = len(steps) self.callback = callback def _write(self, writer, time, substep, point_data, cell_data): writer.write_data( time, point_data={key: value(substep) for key, value in point_data.items()}, cell_data={key: value(substep) for key, value in cell_data.items()}, )
[docs] def evaluate( self, filename=None, mesh=None, point_data={"Displacement": displacement}, cell_data={ "Principal Values of Logarithmic Strain": log_strain_principal, "Logarithmic Strain": log_strain, "Deformation Gradient": deformation_gradient, }, verbose=True, **kwargs, ): if verbose: print( f""" _______ _______ ___ __ __ _______ _______ | || || | | | | || || | | ___|| ___|| | | | | || _ || ___| | |___ | |___ | | | |_| || |_| || |___ | ___|| ___|| |___ | || ___|| ___| | | | |___ | || || | | |___ |___| |_______||_______||_______||___| |_______| FElupe Version {version} """ ) print("Run Job") print("=======\n") if filename is not None: from meshio.xdmf import TimeSeriesWriter if mesh is None: if "x0" in kwargs.keys(): mesh = kwargs["x0"].region.mesh.as_meshio() else: mesh = self.steps[0].items[0].field.region.mesh.as_meshio() increment = 0 else: # fake a mesh and a TimeSeriesWriter from contextlib import nullcontext TimeSeriesWriter = nullcontext with TimeSeriesWriter(filename) as writer: if filename is not None: writer.write_points_cells(mesh.points, mesh.cells) for j, step in enumerate(self.steps): if verbose: print(f"Begin Evaluation of Step {j + 1}.") substeps = step.generate(verbose=verbose, **kwargs) for i, substep in enumerate(substeps): if verbose: _substep = f"Substep {i}/{step.nsubsteps - 1}" _step = f"Step {j + 1}/{self.nsteps}" print(f"{_substep} of {_step} successful.") self.callback(j, i, substep) # update x0 after each completed substep if "x0" in kwargs.keys(): kwargs["x0"].link(substep.x) if filename is not None: self._write(writer, increment, substep, point_data, cell_data) increment += 1