Constitution#

felupe.constitution.linear_elastic(, εn, σn, ζn, λ, μ, **kwargs)[source]#

3D linear-elastic material formulation.

  1. Given state in point x (σn) (valid).

  2. Given strain increment dε, so that ε = εn + dε.

  3. Evaluation of the stress σ and the algorithmic consistent tangent modulus dσdε.

    dσdε = λ 1 ⊗ 1 + 2μ 1 ⊙ 1

    σ = σn + dσdε : dε

Parameters
  • (ndarray) – Strain increment.

  • εn (ndarray) – Old strain tensor.

  • σn (ndarray) – Old stress tensor.

  • ζn (list) – List of old state variables.

  • λ (float) – First Lamé-constant.

  • μ (float) – Second Lamé-constant (shear modulus).

felupe.constitution.linear_elastic_plastic_isotropic_hardening(, εn, σn, ζn, λ, μ, σy, K, **kwargs)[source]#

Linear-elastic-plastic material formulation with linear isotropic hardening (return mapping algorithm).

  1. Given state in point x (σn, ζn=[εpn, αn]) (valid).

  2. Given strain increment dε, so that ε = εn + dε.

  3. Evaluation of the hypothetic trial state:

    dσdε = λ 1 ⊗ 1 + 2μ 1 ⊙ 1

    σ = σn + dσdε : dε

    s = dev(σ)

    εp = εpn

    α = αn

    f = ||s|| - sqrt(2/3) (σy + K α)

  4. If f ≤ 0, then elastic step:

    Set y = yn + dy, y=(σ, ζ=[εp, α]),

    algorithmic consistent tangent modulus dσdε.

    Else:

    dγ = f / (2μ + 2/3 K)

    n = s / ||s||

    σ = σ - 2μ dγ n

    εp = εpn + dγ n

    α = αn + sqrt(2 / 3) dγ

    Algorithmic consistent tangent modulus:

    dσdε = dσdε - 2μ / (1 + K / 3μ) n ⊗ n - 2μ dγ / ||s|| ((2μ 1 ⊙ 1 - 1/3 1 ⊗ 1) - 2μ n ⊗ n)

Parameters
  • (ndarray) – Strain increment.

  • εn (ndarray) – Old strain tensor.

  • σn (ndarray) – Old stress tensor.

  • ζn (list) – List of old state variables.

  • λ (float) – First Lamé-constant.

  • μ (float) – Second Lamé-constant (shear modulus).

  • σy (float) – Initial yield stress.

  • K (float) – Isotropic hardening modulus.