Source code for felupe.constitution.linear_elasticity._linear_elastic_large_strain
# -*- coding: utf-8 -*-
"""
This file is part of FElupe.
FElupe is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
FElupe is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with FElupe. If not, see <http://www.gnu.org/licenses/>.
"""
import numpy as np
from .._base import ConstitutiveMaterial
from ..hyperelasticity import NeoHookeCompressible
from ._lame_converter import lame_converter
[docs]
class LinearElasticLargeStrain(ConstitutiveMaterial):
r"""Linear-elastic material formulation suitable for large-strain analyses based
on the compressible Neo-Hookean material formulation.
Parameters
----------
E : float
Young's modulus.
nu : float
Poisson ratio.
See Also
--------
felupe.NeoHookeCompressible: Compressible isotropic hyperelastic Neo-Hooke material
formulation.
Examples
--------
.. pyvista-plot::
:context:
>>> import felupe as fem
>>>
>>> umat = fem.LinearElasticLargeStrain(E=1.0, nu=0.3)
>>> ax = umat.plot()
.. pyvista-plot::
:include-source: False
:context:
:force_static:
>>> import pyvista as pv
>>>
>>> fig = ax.get_figure()
>>> chart = pv.ChartMPL(fig)
>>> chart.show()
"""
def __init__(self, E, nu, parallel=False):
self.E = E
self.nu = nu
self.kwargs = {"E": self.E, "nu": self.nu}
# aliases for gradient and hessian
self.energy = self.function
self.stress = self.gradient
self.elasticity = self.hessian
# initial variables for calling
# ``self.gradient(self.x)`` and ``self.hessian(self.x)``
self.x = [np.eye(3), np.zeros(0)]
lmbda, mu = lame_converter(E, nu)
self.material = NeoHookeCompressible(mu=mu, lmbda=lmbda, parallel=parallel)
[docs]
def function(self, x):
"""Evaluate the strain energy (as a function of the deformation gradient).
Arguments
---------
x : list of ndarray
List with Deformation gradient ``F`` (3x3) as first item
Returns
-------
ndarray
Stress tensor (3x3)
"""
return self.material.function(x)
[docs]
def gradient(self, x):
"""Evaluate the stress tensor (as a function of the deformation gradient).
Arguments
---------
x : list of ndarray
List with Deformation gradient ``F`` (3x3) as first item
Returns
-------
ndarray
Stress tensor (3x3)
"""
return self.material.gradient(x)
[docs]
def hessian(self, x):
"""Evaluate the elasticity tensor (as a function of the deformation gradient).
Arguments
---------
x : list of ndarray
List with Deformation gradient ``F`` (3x3) as first item.
Returns
-------
ndarray
elasticity tensor (3x3x3x3)
"""
return self.material.hessian(x)