Source code for felupe.constitution.linear_elasticity._linear_elastic_orthotropic

# -*- coding: utf-8 -*-
"""
This file is part of FElupe.

FElupe is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

FElupe is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with FElupe.  If not, see <http://www.gnu.org/licenses/>.
"""

import numpy as np

from ...math import ddot, identity, transpose
from .._base import ConstitutiveMaterial


[docs] class LinearElasticOrthotropic(ConstitutiveMaterial): r"""Orthotropic linear-elastic material formulation. Parameters ---------- E : float Young's modulus (E1, E2, E3). nu : float Poisson ratio (nu12, nu23, n31). G : float Shear modulus (G12, G23, G31). Examples -------- .. pyvista-plot:: :context: >>> import felupe as fem >>> >>> umat = fem.LinearElasticOrthotropic( ... E=[1, 1, 1], nu=[0.3, 0.3, 0.3], G=[0.4, 0.4, 0.4] ... ) >>> ax = umat.plot() .. pyvista-plot:: :include-source: False :context: :force_static: >>> import pyvista as pv >>> >>> fig = ax.get_figure() >>> chart = pv.ChartMPL(fig) >>> chart.show() """ def __init__(self, E, nu, G): self.E = E self.nu = nu self.G = G self.kwargs = {"E": self.E, "nu": self.nu, "G": self.G} # aliases for gradient and hessian self.stress = self.gradient self.elasticity = self.hessian # initial variables for calling # ``self.gradient(self.x)`` and ``self.hessian(self.x)`` self.x = [np.eye(3), np.zeros(0)]
[docs] def gradient(self, x): r"""Evaluate the stress tensor (as a function of the deformation gradient). Parameters ---------- x : list of ndarray List with Deformation gradient :math:`\boldsymbol{F}` (3x3) as first item. Returns ------- ndarray of shape (3, 3, ...) Stress tensor """ F, statevars = x[0], x[-1] # convert the deformation gradient to strain H = F - identity(F) strain = (H + transpose(H)) / 2 # init stress elast = self.hessian(x=x)[0] return [ddot(elast, strain, mode=(4, 2)), statevars]
[docs] def hessian(self, x=None, shape=(1, 1), dtype=None): r"""Evaluate the elasticity tensor. The Deformation gradient is only used for the shape of the trailing axes. Parameters ---------- x : list of ndarray, optional List with Deformation gradient :math:`\boldsymbol{F}` (3x3) as first item (default is None). shape : tuple of int, optional Tuple with shape of the trailing axes (default is (1, 1)). Returns ------- ndarray of shape (3, 3, 3, 3, ...) elasticity tensor """ E1, E2, E3 = self.E nu12, nu23, nu31 = self.nu G12, G23, G31 = self.G if x is not None: dtype = x[0].dtype elast = np.zeros((3, 3, 3, 3, *shape), dtype=dtype) nu21 = nu12 * E2 / E1 nu32 = nu23 * E3 / E2 nu13 = nu31 * E1 / E3 J = 1 / (1 - nu12 * nu21 - nu23 * nu32 - nu31 * nu13 - 2 * nu21 * nu32 * nu13) elast[0, 0, 0, 0] = E1 * (1 - nu23 * nu32) * J elast[1, 1, 1, 1] = E2 * (1 - nu13 * nu31) * J elast[2, 2, 2, 2] = E3 * (1 - nu12 * nu21) * J elast[0, 0, 1, 1] = elast[1, 1, 0, 0] = E1 * (nu21 + nu31 * nu23) * J elast[0, 0, 2, 2] = elast[2, 2, 0, 0] = E1 * (nu31 + nu21 * nu32) * J elast[1, 1, 2, 2] = elast[2, 2, 1, 1] = E2 * (nu32 + nu12 * nu31) * J elast[ [0, 1, 0, 1], [1, 0, 1, 0], [0, 0, 1, 1], [1, 1, 0, 0], ] = G12 elast[ [0, 2, 0, 2], [2, 0, 2, 0], [0, 0, 2, 2], [2, 2, 0, 0], ] = G31 elast[ [1, 2, 1, 2], [2, 1, 2, 1], [1, 1, 2, 2], [2, 2, 1, 1], ] = G23 return [elast]