Source code for felupe.constitution.poisson._laplace

# -*- coding: utf-8 -*-
"""
This file is part of FElupe.

FElupe is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

FElupe is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with FElupe.  If not, see <http://www.gnu.org/licenses/>.
"""

import numpy as np

from ...math import cdya_ik, ddot, identity
from .._base import ConstitutiveMaterial


[docs] class Laplace(ConstitutiveMaterial): r"""Laplace equation as hessian of one half of the second main invariant of the field gradient. Parameters ---------- multiplier : float, optional A multiplier which scales the potential (default is 1.0). Notes ----- The potential is given by the second main invariant of the field gradient w.r.t. the undeformed coordinates. .. math:: \psi = \frac{1}{2} \left( \boldsymbol{H} : \boldsymbol{H} \right) with the field gradient w.r.t. the undeformed coordinates. .. math:: \boldsymbol{H} = \frac{\partial \boldsymbol{u}}{\partial \boldsymbol{X}} Examples -------- .. pyvista-plot:: :context: >>> import felupe as fem >>> >>> umat = fem.Laplace() >>> ax = umat.plot() .. pyvista-plot:: :include-source: False :context: :force_static: >>> import pyvista as pv >>> >>> fig = ax.get_figure() >>> chart = pv.ChartMPL(fig) >>> chart.show() """ def __init__(self, multiplier=1.0): self.multiplier = multiplier self.kwargs = {"multiplier": self.multiplier} # aliases for gradient and hessian self.stress = self.gradient self.elasticity = self.hessian # initial variables for calling # ``self.gradient(self.x)`` and ``self.hessian(self.x)`` self.x = [np.eye(3), np.zeros(0)]
[docs] def function(self, x): r"""Evaluate the potential per unit undeformed volume. Parameters ---------- x : list of ndarray List with Deformation gradient :math:`\boldsymbol{F}` as first item. Returns ------- ndarray of shape (...) potential """ F = x[0] H = F - identity(F) return [self.multiplier * ddot(H, H) / 2]
[docs] def gradient(self, x): r"""Evaluate the stress tensor. Parameters ---------- x : list of ndarray List with Deformation gradient :math:`\boldsymbol{F}` as first item. Returns ------- ndarray of shape (n, m, ...) gradient of the potential w.r.t. the undeformed coordinates """ F, statevars = x[0], x[-1] H = F - identity(F) return [self.multiplier * H, statevars]
[docs] def hessian(self, x): r"""Evaluate the elasticity tensor. Parameters ---------- x : list of ndarray List with Deformation gradient :math:`\boldsymbol{F}` as first item. Returns ------- ndarray of shape (n, m, n, m, ...) hessian of the potential w.r.t. the undeformed coordinates """ n, m = x[0].shape[:2] ntrax = len(x[0].shape) - 2 ones = np.ones(ntrax, dtype=int) return [ self.multiplier * cdya_ik(np.eye(n), np.eye(m)).reshape(n, m, n, m, *ones) ]