Source code for felupe.constitution.poisson._laplace
# -*- coding: utf-8 -*-
"""
This file is part of FElupe.
FElupe is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
FElupe is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with FElupe. If not, see <http://www.gnu.org/licenses/>.
"""
import numpy as np
from ...math import cdya_ik, ddot, identity
from .._base import ConstitutiveMaterial
[docs]
class Laplace(ConstitutiveMaterial):
r"""Laplace equation as hessian of one half of the second main invariant of the
field gradient.
Parameters
----------
multiplier : float, optional
A multiplier which scales the potential (default is 1.0).
Notes
-----
The potential is given by the second main invariant of the field gradient w.r.t.
the undeformed coordinates.
.. math::
\psi = \frac{1}{2} \left( \boldsymbol{H} : \boldsymbol{H} \right)
with the field gradient w.r.t. the undeformed coordinates.
.. math::
\boldsymbol{H} = \frac{\partial \boldsymbol{u}}{\partial \boldsymbol{X}}
Examples
--------
.. pyvista-plot::
:context:
>>> import felupe as fem
>>>
>>> umat = fem.Laplace()
>>> ax = umat.plot()
.. pyvista-plot::
:include-source: False
:context:
:force_static:
>>> import pyvista as pv
>>>
>>> fig = ax.get_figure()
>>> chart = pv.ChartMPL(fig)
>>> chart.show()
"""
def __init__(self, multiplier=1.0):
self.multiplier = multiplier
self.kwargs = {"multiplier": self.multiplier}
# aliases for gradient and hessian
self.stress = self.gradient
self.elasticity = self.hessian
# initial variables for calling
# ``self.gradient(self.x)`` and ``self.hessian(self.x)``
self.x = [np.eye(3), np.zeros(0)]
[docs]
def function(self, x):
r"""Evaluate the potential per unit undeformed volume.
Parameters
----------
x : list of ndarray
List with Deformation gradient :math:`\boldsymbol{F}` as first item.
Returns
-------
ndarray of shape (...)
potential
"""
F = x[0]
H = F - identity(F)
return [self.multiplier * ddot(H, H) / 2]
[docs]
def gradient(self, x):
r"""Evaluate the stress tensor.
Parameters
----------
x : list of ndarray
List with Deformation gradient :math:`\boldsymbol{F}` as first item.
Returns
-------
ndarray of shape (n, m, ...)
gradient of the potential w.r.t. the undeformed coordinates
"""
F, statevars = x[0], x[-1]
H = F - identity(F)
return [self.multiplier * H, statevars]
[docs]
def hessian(self, x):
r"""Evaluate the elasticity tensor.
Parameters
----------
x : list of ndarray
List with Deformation gradient :math:`\boldsymbol{F}` as first item.
Returns
-------
ndarray of shape (n, m, n, m, ...)
hessian of the potential w.r.t. the undeformed coordinates
"""
n, m = x[0].shape[:2]
ntrax = len(x[0].shape) - 2
ones = np.ones(ntrax, dtype=int)
return [
self.multiplier * cdya_ik(np.eye(n), np.eye(m)).reshape(n, m, n, m, *ones)
]