# -*- coding: utf-8 -*-
"""
This file is part of FElupe.
FElupe is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
FElupe is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with FElupe. If not, see <http://www.gnu.org/licenses/>.
"""
from copy import deepcopy as copy
from string import ascii_lowercase as alphabet
import numpy as np
from scipy.special import factorial
from ._base import Element
def lagrange_line(order):
"Return the cell-connectivity for an arbitrary-order Lagrange line."
vertices = np.array([0, order])
edge = np.arange(order + 1)[1:-1]
return np.concatenate([vertices, edge])
def lagrange_quad(order):
"Return the cell-connectivity for an arbitrary-order Lagrange quad."
# points on a unit rectangle
x = np.linspace(0, 1, order + 1)
points = np.vstack([p.ravel() for p in np.meshgrid(x, x, indexing="ij")][::-1]).T
# search vertices
xmin = min(points[:, 0])
ymin = min(points[:, 1])
xmax = max(points[:, 0])
ymax = max(points[:, 1])
def search_vertice(p, x, y):
return np.where(np.logical_and(p[:, 0] == x, p[:, 1] == y))[0][0]
def search_edge(p, a, x):
return np.where(p[:, a] == x)[0][1:-1]
v1 = search_vertice(points, xmin, ymin)
v2 = search_vertice(points, xmax, ymin)
v3 = search_vertice(points, xmax, ymax)
v4 = search_vertice(points, xmin, ymax)
vertices = [v1, v2, v3, v4]
mask1 = np.ones_like(points[:, 0], dtype=bool)
mask1[vertices] = 0
e1 = search_edge(points, 1, ymin)
e2 = search_edge(points, 0, xmax)
e3 = search_edge(points, 1, ymax)
e4 = search_edge(points, 0, xmin)
edges = np.hstack((e1, e2, e3, e4))
mask2 = np.ones_like(points[:, 0], dtype=bool)
mask2[np.hstack((vertices, edges))] = 0
face = np.arange(len(points))[mask2]
return np.hstack((vertices, edges, face))
def lagrange_hexahedron(order):
"Return the cell-connectivity for an arbitrary-order Lagrange hexahedron."
x = np.linspace(0, 1, order + 1)
points = np.vstack([p.ravel() for p in np.meshgrid(x, x, x, indexing="ij")][::-1]).T
# search vertices
xmin = min(points[:, 0])
ymin = min(points[:, 1])
zmin = min(points[:, 2])
xmax = max(points[:, 0])
ymax = max(points[:, 1])
zmax = max(points[:, 2])
def search_vertice(p, x, y, z):
return np.where(
np.logical_and(np.logical_and(p[:, 0] == x, p[:, 1] == y), p[:, 2] == z)
)[0][0]
def search_edge(p, a, b, x, y):
return np.where(np.logical_and(p[:, a] == x, p[:, b] == y))[0][1:-1]
def search_face(p, a, x, vertices, edges):
face = np.where(points[:, a] == x)[0]
mask = np.zeros_like(p[:, 0], dtype=bool)
mask[face] = 1
mask[np.hstack((vertices, edges))] = 0
return np.arange(len(p[:, 0]))[mask]
v1 = search_vertice(points, xmin, ymin, zmin)
v2 = search_vertice(points, xmax, ymin, zmin)
v3 = search_vertice(points, xmax, ymax, zmin)
v4 = search_vertice(points, xmin, ymax, zmin)
v5 = search_vertice(points, xmin, ymin, zmax)
v6 = search_vertice(points, xmax, ymin, zmax)
v7 = search_vertice(points, xmax, ymax, zmax)
v8 = search_vertice(points, xmin, ymax, zmax)
vertices = [v1, v2, v3, v4, v5, v6, v7, v8]
mask1 = np.ones_like(points[:, 0], dtype=bool)
mask1[vertices] = 0
e1 = search_edge(points, 1, 2, ymin, zmin)
e2 = search_edge(points, 0, 2, xmax, zmin)
e3 = search_edge(points, 1, 2, ymax, zmin)
e4 = search_edge(points, 0, 2, xmin, zmin)
e5 = search_edge(points, 1, 2, ymin, zmax)
e6 = search_edge(points, 0, 2, xmax, zmax)
e7 = search_edge(points, 1, 2, ymax, zmax)
e8 = search_edge(points, 0, 2, xmin, zmax)
e9 = search_edge(points, 0, 1, xmin, ymin)
e10 = search_edge(points, 0, 1, xmax, ymin)
e11 = search_edge(points, 0, 1, xmax, ymax)
e12 = search_edge(points, 0, 1, xmin, ymax)
edges = np.hstack((e1, e2, e3, e4, e5, e6, e7, e8, e9, e10, e11, e12))
mask2 = np.ones_like(points[:, 0], dtype=bool)
mask2[np.hstack((vertices, edges))] = 0
f1 = search_face(points, 0, xmin, vertices, edges)
f2 = search_face(points, 0, xmax, vertices, edges)
f3 = search_face(points, 1, ymin, vertices, edges)
f4 = search_face(points, 1, ymax, vertices, edges)
f5 = search_face(points, 2, zmin, vertices, edges)
f6 = search_face(points, 2, zmax, vertices, edges)
faces = np.hstack((f1, f2, f3, f4, f5, f6))
mask3 = np.ones_like(points[:, 0], dtype=bool)
mask3[np.hstack((vertices, edges, faces))] = 0
volume = np.arange(len(points))[mask3]
return np.hstack((vertices, edges, faces, volume))
[docs]
class ArbitraryOrderLagrange(Element):
r"""A n-dimensional Lagrange finite element (e.g. line, quad or hexahdron) of
arbitrary order.
Notes
-----
**Polynomial shape functions**
The basis function vector is generated with row-stacking of the individual lagrange
polynomials. Each polynomial defined in the interval :math:`[-1,1]` is a function of
the parameter :math:`r`. The curve parameters matrix :math:`\boldsymbol{A}` is of
symmetric shape due to the fact that for each evaluation point :math:`r_j` exactly
one basis function :math:`h_j(r)` is needed.
.. math::
\boldsymbol{h}(r) = \boldsymbol{A}^T \boldsymbol{r}(r)
**Curve parameter matrix**
The evaluation of the curve parameter matrix :math:`\boldsymbol{A}` is carried out
by boundary conditions. Each shape function :math:`h_i` has to take the value of one
at the associated nodal coordinate :math:`r_i` and zero at all other point
coordinates.
.. math::
\boldsymbol{A}^T \boldsymbol{R} &=
\boldsymbol{I} \qquad \text{with} \qquad \boldsymbol{R} =
\begin{bmatrix}\boldsymbol{r}(r_1) & \boldsymbol{r}(r_2) & \dots &
\boldsymbol{r}(r_p)\end{bmatrix}
\boldsymbol{A}^T &= \boldsymbol{R}^{-1}
**Interpolation and partial derivatives**
The approximation of nodal unknowns :math:`\hat{\boldsymbol{u}}` as a function of
the parameter :math:`r` is evaluated as
.. math::
\boldsymbol{u}(r) \approx \hat{\boldsymbol{u}}^T \boldsymbol{h}(r)
For the calculation of the partial derivative of the interpolation field w.r.t. the
parameter :math:`r` a simple shift of the entries of the parameter vector is enough.
This shifted parameter vector is denoted as :math:`\boldsymbol{r}^-`. A minus
superscript indices the negative shift of the vector entries by :math:`-1`.
.. math::
\frac{\partial \boldsymbol{u}(r)}{\partial r} &\approx
\hat{\boldsymbol{u}}^T \frac{\partial \boldsymbol{h}(r)}{\partial r}
\frac{\partial \boldsymbol{h}(r)}{\partial r} &=
\boldsymbol{A}^T \boldsymbol{r}^-(r) \qquad \text{with} \qquad r_0^- =
0 \qquad \text{and} \qquad r_i^- = \frac{r^{(i-1)}}{(i-1)!} \qquad
\text{for} \qquad i=(1 \dots p)
n-dimensional shape functions
*****************************
Multi-dimensional shape function matrices
:math:`\boldsymbol{H}_{2D}, \boldsymbol{H}_{3D}` are simply evaluated as dyadic
(outer) vector products of one-dimensional shape function vectors. The multi-
dimensional shape function vector is a one-dimensional representation (flattened
version) of the multi-dimensional shape function matrix.
.. math::
\boldsymbol{H}_{2D}(r,s) &= \boldsymbol{h}(r) \otimes \boldsymbol{h}(s)
\boldsymbol{H}_{3D}(r,s,t) &= \boldsymbol{h}(r) \otimes \boldsymbol{h}(s)
\otimes \boldsymbol{h}(t)
Examples
--------
.. pyvista-plot::
:force_static:
>>> import felupe as fem
>>>
>>> element = fem.ArbitraryOrderLagrangeElement(order=4, dim=2)
>>> element.plot().show()
.. pyvista-plot::
:force_static:
>>> import felupe as fem
>>>
>>> element = fem.ArbitraryOrderLagrangeElement(order=3, dim=3)
>>> element.plot().show()
"""
def __init__(self, order, dim, interval=(-1, 1), permute=True):
self._order = order
self._nshape = order + 1
self._npoints = self._nshape**dim
self._nbasis = self._npoints
self._interval = interval
self.dim = dim
self.permute = None
if permute:
self.permute = [None, lagrange_line, lagrange_quad, lagrange_hexahedron][
dim
](order)
# init curve-parameter matrix
n = self._nshape
self._AT = np.linalg.inv(
np.array([self._polynomial(p, n) for p in self._points(n)])
).T
# indices for outer product in einstein notation
# idx = ["a", "b", "c", ...][:dim]
# subscripts = "a,b,c -> abc"
self._idx = [letter for letter in alphabet][:dim]
self._subscripts = ",".join(self._idx) + "->" + "".join(self._idx)
# init points
grid = np.meshgrid(*np.tile(self._points(n), (dim, 1)), indexing="ij")[::-1]
self.points = np.vstack([point.ravel() for point in grid]).T
if self.permute is not None:
self.points = self.points[self.permute]
self.cells = np.arange(len(self.points)).reshape(1, -1)
self.cell_type = "VTK_LAGRANGE"
if dim == 1:
self.cell_type += "_LINE"
elif dim == 2:
self.cell_type += "_QUADRILATERAL"
elif dim == 3:
self.cell_type += "_HEXAHEDRON"
[docs]
def function(self, r):
"Return the shape functions at given coordinate vector r."
n = self._nshape
# 1d - basis function vectors per axis
fun = [self._AT @ self._polynomial(ra, n) for ra in r]
h = np.einsum(self._subscripts, *fun).ravel("F")
if self.permute is not None:
h = h[self.permute]
return h
[docs]
def gradient(self, r):
"Return the gradient of shape functions at given coordinate vector r."
n = self._nshape
# 1d - basis function vectors per axis
h = [self._AT @ self._polynomial(ra, n) for ra in r]
# shifted 1d - basis function vectors per axis
k = [self._AT @ np.append(0, self._polynomial(ra, n)[:-1]) for ra in r]
# init output
dhdr = np.zeros((n**self.dim, self.dim))
# loop over columns
for i in range(self.dim):
g = copy(h)
g[i] = k[i]
dhdr[:, i] = np.einsum(self._subscripts, *g).ravel("F")
if self.permute is not None:
dhdr = dhdr[self.permute]
return dhdr
def _points(self, n):
"Equidistant n-points in interval [-1, 1]."
return np.linspace(*self._interval, n)
def _polynomial(self, r, n):
"Lagrange-Polynomial of order n evaluated at coordinate vector r."
m = np.arange(n)
return r**m / factorial(m)