Source code for felupe.math._spatial

# -*- coding: utf-8 -*-
"""
This file is part of FElupe.

FElupe is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

FElupe is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with FElupe.  If not, see <http://www.gnu.org/licenses/>.
"""

import numpy as np


[docs] def rotation_matrix(alpha_deg, dim=3, axis=0): r"""Rotation matrix with given rotation axis and dimension (2d or 3d). Parameters ---------- alpha_deg : int Rotation angle in degree. dim : int, optional (default is 3) Dimension of the rotation matrix. axis : int, optional (default is 0) Rotation axis. Returns ------- rotation_matrix : ndarray Rotation matrix of dim 2 or 3 with given rotation axis. Notes ----- The two-dimensional rotation axis is denoted in Eq. :eq:`rotation-matrix-2d`. .. math:: :label: rotation-matrix-2d \boldsymbol{R}(\alpha) = \begin{bmatrix} \cos(\alpha) & -\sin(\alpha) \\ \sin(\alpha) & \cos(\alpha) \end{bmatrix} A three-dimensional rotation matrix is created by inserting zeros in the row and column at the given axis of rotation and one at the intersection, see Eq. :eq:`rotation-matrix-3d`. If the axis of rotation is the second axis, the two- dimensinal rotation matrix is transposed. .. math:: :label: rotation-matrix-3d \boldsymbol{R}(\alpha) = \begin{bmatrix} \cos(\alpha) & -\sin(\alpha) & 0 \\ \sin(\alpha) & \cos(\alpha) & 0 \\ 0 & 0 & 1 \end{bmatrix} Examples -------- >>> import numpy as np >>> import felupe as fem >>> >>> R = fem.math.rotation_matrix(alpha_deg=45, dim=2) >>> x = np.array([1., 0.]) >>> y = R @ x >>> y array([0.70710678, 0.70710678]) """ a = np.deg2rad(alpha_deg) rotation_matrix = np.array([[np.cos(a), -np.sin(a)], [np.sin(a), np.cos(a)]]) if dim == 3: if axis == 1: rotation_matrix = rotation_matrix.T rotation_matrix = np.insert(rotation_matrix, [axis], np.zeros((1, 2)), axis=0) rotation_matrix = np.insert(rotation_matrix, [axis], np.zeros((3, 1)), axis=1) rotation_matrix[axis, axis] = 1 return rotation_matrix