Source code for felupe.assembly._axi

# -*- coding: utf-8 -*-
"""
This file is part of FElupe.

FElupe is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

FElupe is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with FElupe.  If not, see <http://www.gnu.org/licenses/>.
"""

import numpy as np

from ..field import Field, FieldAxisymmetric
from ._cartesian import IntegralFormCartesian


[docs] class IntegralFormAxisymmetric(IntegralFormCartesian): r"""An Integral Form for axisymmetric fields. Parameters ---------- fun : array The pre-evaluated function array. If the array is not contiguous, a C-contiguous copy is made. v : FieldAxisymmetric The axisymmetric test field. dV : array The differential volumes. u : FieldAxisymmetric, optional If a field is passed, a bilinear form is created (default is None). grad_v : bool, optional Flag to activate the gradient on the test field ``v`` (default is False). grad_u : bool, optional Flag to activate the gradient on the trial field ``u`` (default is False). Notes ----- Axisymmetric integral forms are created with a two-dimensional mesh, a two- dimensional element formulation and an axisymmetric field. .. note:: The rotation axis is chosen along the global X-axis :math:`(X,Y,Z) \widehat{=} (Z,R,\varphi)`. The three-dimensional deformation gradient consists of four in-plane components and one additional non-zero entry for the out-of-plane stretch, which is equal to the ratio of the deformed and the undeformed radius. .. math:: \boldsymbol{F} = \begin{bmatrix} \boldsymbol{F}_{(2D)} & \boldsymbol{0} \\ \boldsymbol{0}^T & \frac{r}{R} \end{bmatrix} The variation of the deformation gradient consists of both in- and out-of-plane contributions. .. math:: \delta \boldsymbol{F}_{(2D)} = \delta \left( \frac{ \partial \boldsymbol{u}}{\partial \boldsymbol{X} } \right) \qquad \text{and} \qquad \delta \left(\frac{r}{R}\right) = \frac{\delta u_r}{R} Again, the internal virtual work leads to two seperate terms. .. math:: -\delta W_{int} = \int_V \boldsymbol{P} : \delta \boldsymbol{F} \ dV = \int_V \boldsymbol{P}_{(2D)} : \delta \boldsymbol{F}_{(2D)} \ dV + \int_V \frac{P_{33}}{R} : \delta u_r \ dV The differential volume is further expressed as a product of the differential in-plane area and the differential arc length. The arc length integral is finally pre-evaluated. .. math:: \int_V dV = \int_{\varphi=0}^{2\pi} \int_A R\ dA\ d\varphi = 2\pi \int_A R\ dA Inserting the differential volume integral into the expression of internal virtual work, this leads to: .. math:: -\delta W_{int} = 2\pi \int_A \boldsymbol{P}_{(2D)} : \delta \boldsymbol{F}_{(2D)} \ R \ dA + 2\pi \int_A P_{33} : \delta u_r \ dA A Linearization of the internal virtual work expression gives four terms. .. math:: -\Delta \delta W_{int} &= \Delta_{(2D)} \delta_{(2D)} W_{int} + \Delta_{33} \delta_{(2D)} W_{int} + \Delta_{(2D)} \delta_{33} W_{int} + \Delta_{33} \delta_{33} W_{int} -\Delta_{(2D)} \delta_{(2D)} W_{int} &= 2\pi \int_A \delta \boldsymbol{F}_{(2D)} : \mathbb{A}_{(2D),(2D)} : \Delta \boldsymbol{F}_{(2D)} \ R \ dA -\Delta_{33} \delta_{(2D)} W_{int} &= 2\pi \int_A \delta \boldsymbol{F}_{(2D)} : \mathbb{A}_{(2D),33} : \Delta u_r \ dA -\Delta_{(2D)} \delta_{33} W_{int} &= 2\pi \int_A \delta u_r : \mathbb{A}_{33,(2D)} : \Delta \boldsymbol{F}_{(2D)} \ dA -\Delta_{33} \delta_{33} W_{int} &= 2\pi \int_A \delta u_r : \frac{\mathbb{A}_{33,33}}{R} : \Delta u_r \ dA with .. math:: \mathbb{A}_{(2D)~(2D)} &= \frac{ \partial \psi}{\partial \boldsymbol{F}_{(2D)}~\partial \boldsymbol{F}_{(2D)} } \mathbb{A}_{(2D)~33} &= \frac{ \partial \psi}{\partial \boldsymbol{F}_{(2D)}\ \partial F_{33}} \left ( = \mathbb{A}_{33~(2D)} \right ) \mathbb{A}_{33~33} &= \frac{\partial \psi}{\partial F_{33}~\partial F_{33}} See Also -------- felupe.IntegralForm : Mixed-field integral form container with methods for integration and assembly. felupe.assembly.IntegralFormCartesian : Single-field integral form. """ def __init__(self, fun, v, dV, u=None, grad_v=True, grad_u=True): R = v.radius self.dV = 2 * np.pi * R * dV if u is None: if isinstance(v, FieldAxisymmetric): self.mode = 1 if grad_v: fun_2d = fun[:-1, :-1] fun_zz = fun[(-1,), (-1,)] / R else: fun_2d = fun[:-1] fun_zz = fun[-1].reshape(1, *fun[-1].shape) / R form_a = IntegralFormCartesian(fun_2d, v, self.dV, grad_v=grad_v) form_b = IntegralFormCartesian(fun_zz, v.scalar, self.dV) self.forms = [form_a, form_b] else: self.mode = 10 form_a = IntegralFormCartesian(fun, v, self.dV, grad_v=False) self.forms = [ form_a, ] else: if isinstance(v, FieldAxisymmetric) and isinstance(u, FieldAxisymmetric): self.mode = 2 if grad_v and grad_u: form_aa = IntegralFormCartesian( fun[:-1, :-1, :-1, :-1], v, self.dV, u, True, True ) form_bb = IntegralFormCartesian( fun[-1, -1, -1, -1] / R**2, v.scalar, self.dV, u.scalar, False, False, ) form_ba = IntegralFormCartesian( fun[-1, -1, :-1, :-1] / R, v.scalar, self.dV, u, False, True ) form_ab = IntegralFormCartesian( fun[:-1, :-1, -1, -1] / R, v, self.dV, u.scalar, True, False ) if not grad_v and grad_u: form_aa = IntegralFormCartesian( fun[:-1, :-1, :-1], v, self.dV, u, False, True ) form_bb = IntegralFormCartesian( fun[-1, -1, -1] / R**2, v.scalar, self.dV, u.scalar, False, False, ) form_ba = IntegralFormCartesian( fun[-1, :-1, :-1] / R, v.scalar, self.dV, u, False, True ) form_ab = IntegralFormCartesian( fun[:-1, -1, -1] / R, v, self.dV, u.scalar, False, False ) self.forms = [form_aa, form_bb, form_ba, form_ab] elif isinstance(v, FieldAxisymmetric) and isinstance(u, Field): self.mode = 30 form_a = IntegralFormCartesian( fun[:-1, :-1], v, self.dV, u, True, False ) form_b = IntegralFormCartesian( fun[-1, -1] / R, v.scalar, self.dV, u, False, False ) self.forms = [form_a, form_b] elif isinstance(v, Field) and isinstance(u, Field): self.mode = 40 form_a = IntegralFormCartesian(fun, v, self.dV, u, False, False) self.forms = [ form_a, ]
[docs] def integrate(self, parallel=False, out=None): values = [form.integrate(parallel=parallel) for form in self.forms] if self.mode == 1: values[0] += np.pad(values[1], ((0, 0), (1, 0), (0, 0))) val = values[0] if self.mode == 30: if len(values[0].shape) > 4: values[0] = values[0][:, :, 0, 0] if len(values[1].shape) > 4: values[1] = values[1][:, :, 0, 0] a, b, e = values[1].shape values[1] = values[1].reshape(a, 1, b, e) values[0] += np.pad(values[1], ((0, 0), (1, 0), (0, 0), (0, 0))) val = values[0] elif self.mode == 2: a, b, e = values[1].shape values[1] = values[1].reshape(a, 1, b, 1, e) values[1] = np.pad(values[1], ((0, 0), (1, 0), (0, 0), (1, 0), (0, 0))) a, b, i, e = values[2].shape values[2] = values[2].reshape(a, 1, b, i, e) values[2] = np.pad(values[2], ((0, 0), (1, 0), (0, 0), (0, 0), (0, 0))) a, i, b, e = values[3].shape values[3] = values[3].reshape(a, i, b, 1, e) values[3] = np.pad(values[3], ((0, 0), (0, 0), (0, 0), (1, 0), (0, 0))) for i in range(1, len(values)): values[0] += values[i] val = values[0] elif self.mode == 10 or self.mode == 40: val = values[0] return val
[docs] def assemble(self, values=None, parallel=False, out=None): if values is None: values = self.integrate(parallel=parallel, out=out) return self.forms[0].assemble(values)