Source code for felupe.mechanics._solidbody_force

# -*- coding: utf-8 -*-
"""
This file is part of FElupe.

FElupe is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

FElupe is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with FElupe.  If not, see <http://www.gnu.org/licenses/>.
"""

import numpy as np
from scipy.sparse import csr_matrix

from ..assembly import IntegralForm
from ._helpers import Assemble, Results


[docs] class SolidBodyForce: r"""A body force on a solid body. Parameters ---------- field : FieldContainer A field container with fields created on a boundary region. values : ndarray or None, optional The prescribed values (e.g. gravity :math:`\boldsymbol{g}`). Default is None. If None, the values are set to zero (the dimension is derived from the first field of the field container). scale : float, optional An optional scale factor for the values, e.g. density :math:`\rho` of the solid body. Default is 1.0. Notes ----- .. math:: \delta W_{ext} = \int_V \delta \boldsymbol{u} \cdot \rho \boldsymbol{g} \ dV Examples -------- .. pyvista-plot:: >>> import felupe as fem >>> >>> mesh = fem.Cube(n=6) >>> region = fem.RegionHexahedron(mesh) >>> field = fem.FieldContainer([fem.Field(region, dim=3)]) >>> boundaries = fem.dof.symmetry(field[0]) >>> >>> umat = fem.NeoHooke(mu=1, bulk=2) >>> solid = fem.SolidBody(umat, field) >>> density = 1.0 >>> force = fem.SolidBodyForce(field, scale=density) >>> >>> gravity = fem.math.linsteps([0, 2], num=5, axis=0, axes=3) >>> step = fem.Step( ... items=[solid, force], ... ramp={force: gravity}, ... boundaries=boundaries, ... ) >>> >>> job = fem.Job(steps=[step]).evaluate() >>> solid.plot("Principal Values of Cauchy Stress").show() """ def __init__(self, field, values=None, scale=1.0): self.field = field self.results = Results(stress=False, elasticity=False) self.assemble = Assemble( vector=self._vector, matrix=self._matrix, multiplier=-1.0 ) self._form = IntegralForm self.results.values = np.zeros(self.field[0].dim) if values is not None: self.results.values = np.array(values) self.results.scale = scale
[docs] def update(self, values): self.__init__(self.field, values, self.results.scale)
def _vector(self, field=None, parallel=False): if field is not None: self.field = field # copy and take only the first (displacement) field of the container f = self.field.copy() f.fields = f.fields[0:1] self.results.force = self._form( fun=[self.results.scale * self.results.values.reshape(-1, 1, 1)], v=f, dV=self.field.region.dV, grad_v=[False], ).assemble(parallel=parallel) if len(self.field) > 1: self.results.force.resize(np.sum(self.field.fieldsizes), 1) return self.results.force def _matrix(self, field=None, parallel=False): if field is not None: self.field = field n = np.sum(self.field.fieldsizes) self.results.stiffness = csr_matrix(([0.0], ([0], [0])), shape=(n, n)) return self.results.stiffness